Phospholipase D elevates the level of MDM2 and suppresses DNA damage-induced increases in p53.
نویسندگان
چکیده
Phospholipase D (PLD) has been reported to generate survival signals that prevent apoptosis induced by serum withdrawal. We have now found that elevated expression of PLD also suppresses DNA damage-induced apoptosis. Since DNA damage-induced apoptosis is often mediated by p53, we examined the effect of elevated PLD expression on the regulation of p53 stabilization. We report here that PLD suppresses DNA damage-induced increases in p53 stabilization in cells where PLD has been shown to provide a survival signal. Elevated expression of PLD also led to increased expression of the p53 E3 ubiquitin ligase MDM2 and increased turnover of p53. PLD1-stimulated increases in MDM2 expression and suppression of p53 activation were blocked by inhibition of mTOR and the mitogen-activated protein kinase pathway. Although PLD did not activate the phosphatidylinositol 3-kinase (PI3K)/Akt survival pathway activate the basal levels of PI3K activity were partially required for PLD1-induced increases in MDM2. These data provide evidence that survival signals generated by PLD involve suppression of the p53 response pathway.
منابع مشابه
Phosphorylation of Daxx by ATM Contributes to DNA Damage-Induced p53 Activation
p53 plays a central role in tumor suppression. It does so by inducing anti-proliferative processes as a response to various tumor-promoting stresses. p53 is regulated by the ubiquitin ligase Mdm2. The optimal function of Mdm2 requires Daxx, which stabilizes Mdm2 through the deubiquitinase Hausp/USP7 and also directly promotes Mdm2's ubiquitin ligase activity towards p53. The Daxx-Mdm2 interacti...
متن کاملPhosphorylation and degradation of MdmX is inhibited by Wip1 phosphatase in the DNA damage response.
MdmX and Mdm2 regulate p53 tumor suppressor functions by controlling p53 transcriptional activity and/or stability in cells exposed to DNA damage. Accumulating evidence indicates that ATM-mediated phosphorylation and degradation of Mdm2 and MdmX may be the initial driving force that induces p53 activity during the early phase of the DNA damage response. We have recently determined that a novel ...
متن کاملHAUSP-nucleolin interaction is regulated by p53-Mdm2 complex in response to DNA damage response
HAUSP (herpes virus-associated ubiquitin specific protease, known as ubiquitin specific protease 7), one of DUBs, regulates the dynamics of the p53 and Mdm2 network in response to DNA damage by deubiquitinating both p53 and its E3 ubiquitin ligase, Mdm2. Its concerted action increases the level of functional p53 by preventing proteasome-dependent degradation of p53. However, the protein substra...
متن کاملDNA damage increases the levels of MDM2 messenger RNA in wtp53 human cells.
Damage to chromosomal DNA increases the levels of the transcriptional regulatory protein p53. We have investigated how the MDM2 protein, which binds to p53 and inactivates its transcriptional activity, may be controlled following DNA damage. Irradiation of human GM2149 fibroblast cells causes an increase in MDM2 mRNA levels within 1 h, and levels remain elevated for at least 8 h. The induction ...
متن کاملMDM2 Antagonists Counteract Drug-Induced DNA Damage
Antagonists of MDM2-p53 interaction are emerging anti-cancer drugs utilized in clinical trials for malignancies that rarely mutate p53, including melanoma. We discovered that MDM2-p53 antagonists protect DNA from drug-induced damage in melanoma cells and patient-derived xenografts. Among the tested DNA damaging drugs were various inhibitors of Aurora and Polo-like mitotic kinases, as well as tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 24 13 شماره
صفحات -
تاریخ انتشار 2004